Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Guidance of zoospores by potassium gradient sensing mediates aggregation.

Identifieur interne : 000486 ( Main/Exploration ); précédent : 000485; suivant : 000487

Guidance of zoospores by potassium gradient sensing mediates aggregation.

Auteurs : Eric Galiana [France] ; Celine Cohen [France] ; Philippe Thomen [France] ; Catherine Etienne [France] ; Xavier Noblin [France]

Source :

RBID : pubmed:31387479

Descripteurs français

English descriptors

Abstract

The biflagellate zoospores of some phytopathogenic Phytophthora species spontaneously aggregate within minutes in suspension. We show here that Phytophthora parasitica zoospores can form aggregates in response to a K+ gradient with a particular geometric arrangement. Using time-lapse live imaging in macro- and microfluidic devices, we defined (i) spatio-temporal and concentration-scale changes in the gradient, correlated with (ii) the cell distribution and (iii) the metrics of zoospore motion (velocity, trajectory). In droplets, we found that K+-induced aggregates resulted from a single biphasic temporal sequence involving negative chemotaxis followed by bioconvection over a K+ gradient concentration scale [0-17 mM]. Each K+-sensing cell moved into a region in which potassium concentration is below the threshold range of 1-4 mM, resulting in swarming. Once a critical population density had been achieved, the zoospores formed a plume that migrated downward, with fluid advection in its wake and aggregate formation on the support surface. In the microfluidic device, the density of zoospores escaping potassium was similar to that achieved in droplets. We discuss possible sources of K+ gradients in the natural environment (zoospore population, microbiota, plant roots, soil particles), and implications for the events preceding inoculum formation on host plants.

DOI: 10.1098/rsif.2019.0367
PubMed: 31387479
PubMed Central: PMC6731506


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Guidance of zoospores by potassium gradient sensing mediates aggregation.</title>
<author>
<name sortKey="Galiana, Eric" sort="Galiana, Eric" uniqKey="Galiana E" first="Eric" last="Galiana">Eric Galiana</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis</wicri:regionArea>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Celine" sort="Cohen, Celine" uniqKey="Cohen C" first="Celine" last="Cohen">Celine Cohen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thomen, Philippe" sort="Thomen, Philippe" uniqKey="Thomen P" first="Philippe" last="Thomen">Philippe Thomen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Etienne, Catherine" sort="Etienne, Catherine" uniqKey="Etienne C" first="Catherine" last="Etienne">Catherine Etienne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis</wicri:regionArea>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noblin, Xavier" sort="Noblin, Xavier" uniqKey="Noblin X" first="Xavier" last="Noblin">Xavier Noblin</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31387479</idno>
<idno type="pmid">31387479</idno>
<idno type="doi">10.1098/rsif.2019.0367</idno>
<idno type="pmc">PMC6731506</idno>
<idno type="wicri:Area/Main/Corpus">000414</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000414</idno>
<idno type="wicri:Area/Main/Curation">000414</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000414</idno>
<idno type="wicri:Area/Main/Exploration">000414</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Guidance of zoospores by potassium gradient sensing mediates aggregation.</title>
<author>
<name sortKey="Galiana, Eric" sort="Galiana, Eric" uniqKey="Galiana E" first="Eric" last="Galiana">Eric Galiana</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis</wicri:regionArea>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cohen, Celine" sort="Cohen, Celine" uniqKey="Cohen C" first="Celine" last="Cohen">Celine Cohen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thomen, Philippe" sort="Thomen, Philippe" uniqKey="Thomen P" first="Philippe" last="Thomen">Philippe Thomen</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Etienne, Catherine" sort="Etienne, Catherine" uniqKey="Etienne C" first="Catherine" last="Etienne">Catherine Etienne</name>
<affiliation wicri:level="1">
<nlm:affiliation>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis</wicri:regionArea>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
<wicri:noRegion>Sophia Antipolis</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noblin, Xavier" sort="Noblin, Xavier" uniqKey="Noblin X" first="Xavier" last="Noblin">Xavier Noblin</name>
<affiliation wicri:level="3">
<nlm:affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Nice</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of the Royal Society, Interface</title>
<idno type="eISSN">1742-5662</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chemotaxis (MeSH)</term>
<term>Phytophthora (drug effects)</term>
<term>Phytophthora (physiology)</term>
<term>Potassium (chemistry)</term>
<term>Potassium (pharmacology)</term>
<term>Spores, Fungal (drug effects)</term>
<term>Spores, Fungal (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chimiotaxie (MeSH)</term>
<term>Phytophthora (effets des médicaments et des substances chimiques)</term>
<term>Phytophthora (physiologie)</term>
<term>Potassium (composition chimique)</term>
<term>Potassium (pharmacologie)</term>
<term>Spores fongiques (effets des médicaments et des substances chimiques)</term>
<term>Spores fongiques (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Phytophthora</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Phytophthora</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Phytophthora</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Phytophthora</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chemotaxis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Chimiotaxie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The biflagellate zoospores of some phytopathogenic Phytophthora species spontaneously aggregate within minutes in suspension. We show here that Phytophthora parasitica zoospores can form aggregates in response to a K
<sup>+</sup>
gradient with a particular geometric arrangement. Using time-lapse live imaging in macro- and microfluidic devices, we defined (i) spatio-temporal and concentration-scale changes in the gradient, correlated with (ii) the cell distribution and (iii) the metrics of zoospore motion (velocity, trajectory). In droplets, we found that K
<sup>+</sup>
-induced aggregates resulted from a single biphasic temporal sequence involving negative chemotaxis followed by bioconvection over a K
<sup>+</sup>
gradient concentration scale [0-17 mM]. Each K
<sup>+</sup>
-sensing cell moved into a region in which potassium concentration is below the threshold range of 1-4 mM, resulting in swarming. Once a critical population density had been achieved, the zoospores formed a plume that migrated downward, with fluid advection in its wake and aggregate formation on the support surface. In the microfluidic device, the density of zoospores escaping potassium was similar to that achieved in droplets. We discuss possible sources of K
<sup>+</sup>
gradients in the natural environment (zoospore population, microbiota, plant roots, soil particles), and implications for the events preceding inoculum formation on host plants.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31387479</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1742-5662</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>16</Volume>
<Issue>157</Issue>
<PubDate>
<Year>2019</Year>
<Month>08</Month>
<Day>30</Day>
</PubDate>
</JournalIssue>
<Title>Journal of the Royal Society, Interface</Title>
<ISOAbbreviation>J R Soc Interface</ISOAbbreviation>
</Journal>
<ArticleTitle>Guidance of zoospores by potassium gradient sensing mediates aggregation.</ArticleTitle>
<Pagination>
<MedlinePgn>20190367</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1098/rsif.2019.0367</ELocationID>
<Abstract>
<AbstractText>The biflagellate zoospores of some phytopathogenic Phytophthora species spontaneously aggregate within minutes in suspension. We show here that Phytophthora parasitica zoospores can form aggregates in response to a K
<sup>+</sup>
gradient with a particular geometric arrangement. Using time-lapse live imaging in macro- and microfluidic devices, we defined (i) spatio-temporal and concentration-scale changes in the gradient, correlated with (ii) the cell distribution and (iii) the metrics of zoospore motion (velocity, trajectory). In droplets, we found that K
<sup>+</sup>
-induced aggregates resulted from a single biphasic temporal sequence involving negative chemotaxis followed by bioconvection over a K
<sup>+</sup>
gradient concentration scale [0-17 mM]. Each K
<sup>+</sup>
-sensing cell moved into a region in which potassium concentration is below the threshold range of 1-4 mM, resulting in swarming. Once a critical population density had been achieved, the zoospores formed a plume that migrated downward, with fluid advection in its wake and aggregate formation on the support surface. In the microfluidic device, the density of zoospores escaping potassium was similar to that achieved in droplets. We discuss possible sources of K
<sup>+</sup>
gradients in the natural environment (zoospore population, microbiota, plant roots, soil particles), and implications for the events preceding inoculum formation on host plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Galiana</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cohen</LastName>
<ForeName>Celine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomen</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Etienne</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, INRA, CNRS, ISA, Sophia Antipolis, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noblin</LastName>
<ForeName>Xavier</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Parc Valrose, 06108 Nice, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J R Soc Interface</MedlineTA>
<NlmUniqueID>101217269</NlmUniqueID>
<ISSNLinking>1742-5662</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>RWP5GA015D</RegistryNumber>
<NameOfSubstance UI="D011188">Potassium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002633" MajorTopicYN="Y">Chemotaxis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010838" MajorTopicYN="N">Phytophthora</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011188" MajorTopicYN="N">Potassium</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Phytophthora</Keyword>
<Keyword MajorTopicYN="Y">aggregation</Keyword>
<Keyword MajorTopicYN="Y">bioconvection</Keyword>
<Keyword MajorTopicYN="Y">negative chemotaxis</Keyword>
<Keyword MajorTopicYN="Y">zoospore</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31387479</ArticleId>
<ArticleId IdType="doi">10.1098/rsif.2019.0367</ArticleId>
<ArticleId IdType="pmc">PMC6731506</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Electrophoresis. 2000 Jan;21(1):27-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 Aug;15(8):790-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12182336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycol Res. 2004 Jan;108(Pt 1):5-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15035500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2005 Jan;3(1):47-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15608699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2005 Mar;42(3):213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15707842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2005 Aug;151(2):182-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2007 Jan;9(1):31-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17081190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;177(2):480-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18028297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Aug;10(8):2164-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18430009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Jan;185(1):248-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19807870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2010 Jul;100(7):632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20528180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Mar;115(3):228-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21354529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J R Soc Interface. 2014 Mar 05;11(94):20140017</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24598206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2014 May;165(3):275-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24739437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2014 Aug;20:75-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24845577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2016 Apr 05;7:123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27092083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2017 Feb 15;115:80-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27713081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Jan 12;168(1-2):200-209.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28086091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jan 26;13(1):e1006028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28125714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Jun 20;13(6):e1006457</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28632755</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Nice</li>
</settlement>
</list>
<tree>
<country name="France">
<noRegion>
<name sortKey="Galiana, Eric" sort="Galiana, Eric" uniqKey="Galiana E" first="Eric" last="Galiana">Eric Galiana</name>
</noRegion>
<name sortKey="Cohen, Celine" sort="Cohen, Celine" uniqKey="Cohen C" first="Celine" last="Cohen">Celine Cohen</name>
<name sortKey="Etienne, Catherine" sort="Etienne, Catherine" uniqKey="Etienne C" first="Catherine" last="Etienne">Catherine Etienne</name>
<name sortKey="Noblin, Xavier" sort="Noblin, Xavier" uniqKey="Noblin X" first="Xavier" last="Noblin">Xavier Noblin</name>
<name sortKey="Thomen, Philippe" sort="Thomen, Philippe" uniqKey="Thomen P" first="Philippe" last="Thomen">Philippe Thomen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000486 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000486 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31387479
   |texte=   Guidance of zoospores by potassium gradient sensing mediates aggregation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31387479" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024